DEGREE SEQUENCES ON LINE GRAPH OF R-CORONA GRAPHS

Veeresh S. M., Manjunath Muddalapuram and Pralahad M.
Department of Mathematics, Ballari Institute of Technology and Management, Ballari - 583104, Karnataka, INDIA
E-mail : veeresh2010.1155@gmail.com, manju3479@gmail.com, pralahadm74@gmail.com

(Received: Apr. 12, 2021 Accepted: Apr. 01, 2022 Published: Apr. 30, 2022)
Abstract: A graph $G=(V, E)$ is a set of vertices, which are connected by edges. In this paper, we study the line graph of R-corona operations of complete, cycle and r-regular graphs in terms of degree sequences $(D S)$.
Keywords and Phrases: Line graph, R - corona operations, complete, cycle and r-regular graphs.

2020 Mathematics Subject Classification: 05C76.

1. Introduction

Let $G=(V, E)$ be a simple connected graph which does not contains loops and multiple edge. The degree of vertex u is the number of vertices are adjacent to u and it is denoted as deg_{u} or d_{u}. A graph in which every two vertices are adjacent is called as a complete graph [5]. A closed walk is finite or infinite vertices and no vertex is repeated is called cycle [11]. A graph is said to be r-regular graph in which each vertex degree is $r[8]$.

Tyshkevich et. al., [10, 4] established a correspondence between $D S$ s of graph and some structural properties of the graph in 1981 and Bolloas started the study on $D S \mathrm{~s}$ on the same year. The degree sequences $D S \mathrm{~s}$ of a graph G is obtained by degree of vertices x_{i} of G in ascending or descending order and it is defined as $D S(G)=\left\{\aleph_{1}^{\ell_{1}}, \aleph_{2}^{\ell_{2}}, \aleph_{3}^{\ell_{3}}, \ldots, \aleph_{n}^{\ell_{n}}\right\}[2,9]$.

